

ISO's 2050 Transmission Study for the New England States

2022 NECPUC Symposium

Vickie VanZandt

ISO NEW ENGLAND BOARD OF DIRECTORS

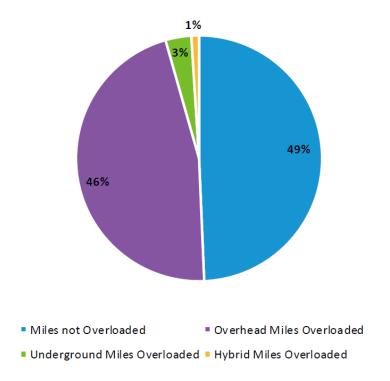
CHAIR, SYSTEM PLANNING AND RELIABILITY COMMITTEE

2050 Transmission Study: Developed in Response to NESCOE's 2020 Vision

- In October 2020, NESCOE released the "New England States' Vision for a Clean, Affordable, and Reliable 21st Century Regional Electric Grid"
 - ISO-NE to conduct a comprehensive, long-term regional transmission planning study to inform all stakeholders of the transmission infrastructure needed to cost-effectively integrate clean energy resources and distributed energy resources across the region to meet New England states' energy policy requirements and goals
- The scope of the 2050 Transmission Study:
 - Focuses on transmission required to serve peak loads
 - Evaluates thermal overloads
 - (Does not evaluate voltage or stability concerns)

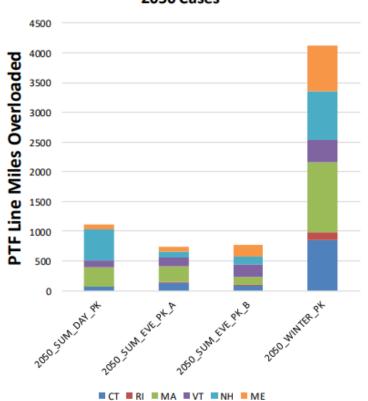
2050 Transmission Study: "Snapshots"

Evaluates:

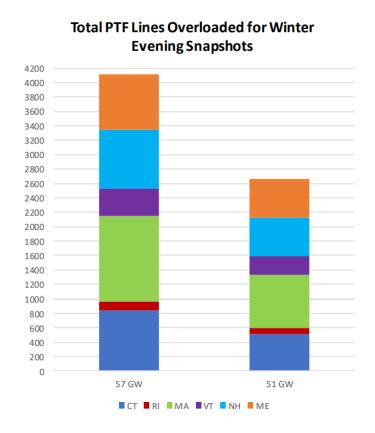

- Summer daytime and evening peaks, and
- Winter evening peak
- Snapshots for 2035, 2040, and 2050
- Assumptions drive outcomes:
 - New England shifts from a summer to a winter peaking area
 - Increases utilization of renewables resources

Power Consumption by Snapshot (MW)				
Year	Summer Daytime Peak	Summer Evening Peak A (Overall Peak)	Summer Evening Peak B (Northern NE Peak)	Winter Evening Peak
2035	29,375	26,749	25,741	35,116
2040	32,447	32,968	31,968	43,046
2050	40,004	38,601	38,492	56,997

2050 Transmission Study: Takeaways


In 2050, overloads occur on ~50% of the total transmission line miles ...

Total PTF Line Miles Overloaded in 2050


... mostly during the winter evening peak, driven by high heating load

Total PTF Line Miles Overloaded for the 2050 Cases

2050 Transmission Study: Takeaways, cont.

- North-South paths need significant reinforcement
- What Now?
 - Rebuilds will not do the trick
 - Modest adjustments to assumptions will not resolve the overloads
 - Significant new lines are needed
- Remember:
 - This is thermal, steady-state evaluation, so far
 - Voltage and stability studies need to happen too (hold that thought)

What's Next?

- Identify potential transmission solutions for the states to consider
- Develop high-level costs estimates to develop the infrastructure
- Then the hard part: How does it get paid for?
- Then the really hard part: How can this get sited?

Some Final Thoughts

- This is not your Mother's power system anymore ...
 - ... the power system as a whole will behave differently than the one we have today and it will be **more challenging to operate** (remember the needed voltage and stability studies)
- Inverter-based resources do not have the same dynamic performance profile as thermal generators, however ...
 - ... they *can* provide fast frequency response following a contingency *IF* equipped with the controls to allow it, although sustaining this response will be limited
- Recommendation: The region needs to require deployment of these controls to increase operational flexibility
 - Will require significant improvements to planning and operational models